Research Unit: Institut d'Écologie et des Sciences de l'Environnement de Paris (IEES Paris), joint research unit UMR 7618 – CNRS & Sorbonne Université
Team: Équipe Écologie et évolution des réseaux d'interactions (EERI)
Scientific supervisors: Florence Débarre (CNRS), François Blanquart (Collège de France) and Peter Czuppon (University of Münster)
Funding: MODCOV19 Platform (Insmi), fellowship granted to FD
Project: Using case data to estimate the date emergence of an epidemic outbreak
Research Unit: Modélisation, épidémiologie et surveillance des risques sanitaires (MESuRS).
Scientific supervisors: Kévin Jean (Cnam) and Laura Temime (Cnam)
Funding: ANRS -- COVID-19, granted to KJ
Project: NOSOCOVID - Nosocomial SARS-CoV-2 transmission in Egyptian hospitals (ANRS Project)
Teaching: Biology Faculty (UFR 927)
Research: Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238 CNRS & Sorbonne Université.
Team: Mathematical modeling in biology
Research Unit: Pierre Louis Institute of Epidemiology and Public Health (IPLESP), joint research unit UMRS 1136 Inserm & Sorbonne Université.
Team: Communicable Diseases Surveillance and Modelling (SUMO)
Doctoral School: ED 393, Pierre Louis Doctoral School of Epidemiology and Public Health.
Advisors:Virginie Supervie (Inserm) and Romulus Breban (Institut Pasteur).
Defense jury: Chris Bauch (referee, University of Waterloo), Raffaele Vardavas (referee, RAND Corporation), Alberto D'Onofrio (Trieste University), Judith Mueller (EHESP), Sylvain Sorin (Sorbonne Université).
Funding: Sorbonne Université (3-year public doctoral allocation granted to SJ) and ANRS (1-year research allocation granted to SJ)
Thesis subject: Voluntary prevention in the context of efficient treatment : a game-theoretic approach.
Program: Mathematics Applied to Biological and Medical Sciences (MBIO)
Advisor: Virginie Supervie
Dissertation subject: Modeling the impact of pre-exposure prophylaxis in HIV incidence among men who have sex with men.
Advisor: Pedro Merino
Dissertation subject: Reduction of a population spreading problem using Proper Orthogonal Decomposition (POD) method.
(French qualification required for applying to lecturer positions)
Sections CNU:
Section 26 - Mathématiques appliquées et applications des mathématiques
Section 85 - Ingénierie appliquée à la santé
Updated: January, 2022.